
I

IMPLEMENTATION OF DIT-FFT ALGORITHM USING VERILOG

A Project report submitted in partial fulfillment of the requirements for

the award of the degree of

BACHELOR OF TECHNOLOGY

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

Submitted by

V. Purna Satya Srinivas (318126512178) D. Durga Sai Prasanth (318126512134)

K. Anil Kumar (318126512145) G. Chaitanya Sai (316126512135)

Under the guidance of

Dr. B. Somasekhar

Associate Professor

 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY AND SCIENCES

(UGC AUTONOMOUS)

(Permanently Affiliated to AU, Approved by AICTE and Accredited by NBA & NAAC with ‘A’ Grade)

Sangivalasa, Bheemili Mandal, Visakhapatnam dist. (A.P)

(2021-22)

II

ACKNOWLEDGEMENT

We would like to express our deep gratitude to our project guide Dr. B. Somasekhar, Associate
Professor, Department of Electronics and Communication Engineering, ANITS, for his guidance
with unsurpassed knowledge and immense encouragement.

We are grateful to Dr. V. Rajya Lakshmi, Head of the Department, Electronics and
Communication Engineering, for providing us with the required facilities for the completion of
the project work.

We would also express our deep gratitude to the Dr. S. Srinivas, Associate Professor,
Department of Electronics and Communication Engineering, ANITS, for his guidance with
unsurpassed knowledge and immense encouragement.

We are very much thankful to the Principal and Management, ANITS, Sangivalasa, for their
encouragement and cooperation to carry out this work.

We express our thanks to all teaching faculty of Department of ECE, whose suggestions during
reviews helped us in accomplishment of our project. We would like to thank all non-teaching
staff of the Department of ECE, ANITS for providing great assistance in accomplishment of our
project.

We would like to thank our parents, friends, and classmates for their encouragement
throughout our project period. Finally, we thank everyone for supporting us directly or indirectly
in completing this project successfully.

 PROJECT STUDENTS

V. Purna Satya Srinivas (318126512178)

 D. Durga Sai Prasanth (318126512134)

K. Anil Kumar (318126512145)

G. Chaitanya Sai (316126512135)

IV

CONTENTS

ABSTRACT

LIST OF FIGURES

LIST OF TABLES

LIST OF ABBREVATIONS

CHAPTER 1: INTRODUCTION .. 1

1.1 Fourier series .. 1

1.2 Fourier Transform .. 5

1.3 Discrete Fourier Transform (DFT) ... 6

1.4 Fast Fourier Transform(FFT) ... 7

1.5 DFT vs FFT .. 9

1.6 FFT Algorithms .. 10

CHAPTER 2: BACKGROUND WORK AND MOTIVATION .. 21

2.1 Literature Review ... 21

CHAPTER 3: METHODOLOGY .. 23

3.1 Decimation in time ... 23

3.2 FFT with radix-2 decimation-in-time ... 25

CHAPTER 4: IMPLEMENTATION OF FFT ALGORITHM ... 26

4.1 Implementation of 8-Point Radix2 DIT-FFT Algorithm ... 26

4.2 Decimation – In – Time (DIT) FFT Algorithm.. 27

4.3 Flow Chart of Implementation ... 32

CHAPTER 5: SIMULATION RESULTS ... 33

5.1 Behavioural Simulation .. 33

5.2 Schematics .. 34

5.3 Device outlook after Synthesis ... 35

5.4 Output Sequence displayed in Vivado and Matlab .. 36

V

5.5 Utilization Report for the Design ... 37

5.6 Vivado Synthesis Report .. 40

5.7 Matlab vs Vivado ... 42

5.8 Conclusion and Future scope ... 43

CHAPTER 6: APPENDIX ... 44

APPENDIX-A: OVERVIEW OF DIGITAL SYSTEM DESIGN ... 44

APPENDIX-B: INTRODUCTION TO VERILOG.. 47

APPENDIX-C: XILINX VIVADO .. 54

BIBLIOGRAPHY ... 67

PUBLICATIONS .. 69

VI

ABSTRACT

DFT and FFT are two of the most extensively used DSP algorithms, whose relevance has grown

dramatically in recent years. There are several uses of DFT, in convolution and linear filtering.

The Fast Fourier Transform is another method for quickly computing DFT. There are vast

variety of applications related to DFT and FFT. They are used in Communication devices to

process the data received by the receivers and also to process the data to be sent by the

transmitters. A DFT has a time complexity of 𝑶(𝑵𝟐), while an FFT has an time complexity

𝑶(𝑵 𝐥𝐨𝐠𝑵). DFT is an integral part of FFT. So in this paper mainly it is mainly focused to

implement a Decimation-in-Time FFT algorithm in Verilog HDL on Vivado. Our Verilog model

outputs further validated with Matlab FFT function outputs for the same input sequence, where

the overall error percentage in magnitude of outputs is less than 1%.

VII

LIST OF FIGURES

Fig 1.1: Square, Saw tooth, Triangle, Semicircle waveforms 2

Fig 1.2: Even, Odd, Neither Even nor Odd functions 3

Fig 1.3: Sin and Cosine functions 3

Fig 1.4: Even vs. Odd Function 8

Fig 1.5: Radix-4 DIT Structure 14

Fig 1.6: Length 4-DFT unit 15

Fig 1.7: Radix-4 Butterfly diagram 17

Fig 1.8: Choosing 8-points in Split radix algorithm 18

Fig 1.9: Diagram representing first 4 outputs in the output sequence 19

Fig 1.10: Diagram representing last 4 outputs in the output sequence 19

Fig 1.11: Diagram describing disadvantage of the split radix algorithm 20

Fig 3.1: Decimation in time of a Length-N DFT into two length-N/2 DFTs 24

 followed by a combining stage

Fig 3.2: Radix-2 DIT butterfly simplification: both operations produce the 25

 same outputs

Fig 3.3: Radix-2 Decimation-in-Time FFT Algorithm for a length-8 signal 25

Fig 4.1: Block diagram of 8-Point Radix2 DIT-FFT Algorithm 27

Fig 4.2: Butterfly diagram for Gk and Hk multiplied with twiddle factors 29

Fig 4.3: Butterfly diagram for stage-3 in 8-point radix-2 FFT algorithm 30

Fig 4.4: Butterfly diagram for DIT FFT Algorithm for N =8 31

Fig 4.5: Flow chart of implementation for DIT-FFT Algorithm 32

Fig 5.1: Behavioral simulation waveform 33

Fig 5.2: Top level Schematic of FFT model 34

Fig 5.3: Detailed schematic of FFT model 34

Fig 5.4: Synthesized schematic 35

VIII

Fig 5.5: Device outlook 35

Fig 5.6: Matlab Command window 36

Fig 5.7: Matlab and Vivado FFT output sequence magnitudes comparison 42

and error percentage

Fig 5.8: Detailed comparison of Matlab and Vivado FFT output sequence 42

magnitudes as Bar graph

Fig 6.1: ISE Project Navigator window 55

Fig 6.2: Creating new project window 57

Fig 6.3: Guiding wizard for the project 57

Fig 6.4: Creating a project name 58

Fig 6.5: Specifying the RTL project 58

Fig 6.6: Choosing a board for project 59

Fig 6.7: Project summary 59

Fig 6.8: Main window for the project 60

Fig 6.9: Project settings window 61

Fig 6.10: Adding the source files 62

Fig 6.11: Wizard that shows to the design source 62

Fig 6.12: Creating a new file name for new design source 63

Fig 6.13: Selecting the type of file and location 64

Fig 6.14: Module defining with ports 65

Fig 6.15: Creating the simulation sources 66

IX

LIST OF TABLES

Table 1.1: DFT vs FFT 9

Table 1.2: Bit Reversal for N=64 16

Table 4.1: Sequence table of DIT FFT Algorithm for N =8 31

X

LIST OF ABBREVIATIONS

FFT Fast Fourier Transform

DIT Decimation in Time

DFT Discrete Fourier Transform

OFDM Orthogonal Frequency Division Multiplexing

MIMO Multi Input Multi Output

SSI Small Scale Integration

MSI Medium Scale Integration

LSI Large Scale Integration

VLSI Very Large Scale Integration

HDL Hardware Description Language

VHDL Very High Speed Integrated Circuit (VHSIC)

 Hardware Description Language

CAD Computer Aided Design

IC Integrated Circuit

RTL Register Transfer Level

FPGA Field Programmable Gate Arrays

1

CHAPTER 1

INTRODUCTION

1.1 Fourier series:

In engineering and science, a significant number of the phenomena researched are cyclic in

character. In an alternating current circuit, for example, current and voltage are important. The

constituent parts of these periodic functions might be analyzed (fundamentals and harmonics).

Fourier analysis can be used to do this.

A Fourier series is an infinite sum of sines and cosines for a periodic function f(x). Sine and

cosine functions are orthogonal to each other, and this is the basis for Fourier series. It is possible

to break down any periodic function into a set of simple terms that can be plugged in, solved one

at a time, and then recombined to obtain the solution to the original problem or an approximation

of it to whatever accuracy is desired or practical using Fourier series computation and study, a

technique known as harmonic analysis.

It is possible to plot an f(x) graph that has a period equal to L and show that f(x + L) is equal to

f(x) for all values of x. We can plot a graph of the function over a larger range of x if we know

how it appears during a single period (that may contain many periods).

This characteristic of repetition gives a first estimation to the periodic pattern f(x): f(x)' c1 sin(kx

+a1) equals a1 cos(kx) + b1 sin(kx), where symbols with subscript “ 1 ” are constants that

specify the amplitude and phase of this first approximation.

By adding an appropriate mix of harmonics to the fundamental (sine-wave) pattern, a far better

approximation of the periodic pattern that is function f(x) may be built up. For example, c2

sin(2kx + c2) = a2 cos(2kx) + b2 sin(2kx) (which is the 2nd harmonic) and c3 sin(3kx + a3) = a3

cos(3kx) + b3 sin(3kx) (which is the 3rd harmonic) (that is the 3rd harmonic). Symbols with

subscripts are the constants that govern the amplitude and phase of each harmonic contribution in

general.

2

Fourier Theorem:

The Fourier Theorem states that arbitrary periodic functions have Fourier series representations

that are extremely difficult to comprehend. Using the Laurent expansions, we will demonstrate

that periodic analytic functions have such a form in this section.

Fourier analysis for Periodic Functions:

Laurent expansions are used to construct the Fourier series representation of analytic functions.

Additional important conclusions in harmonic analysis are derived from elementary complex

analysis, such as the representation of C periodic functions by Fourier series, the representation

of rapidly decreasing functions by Fourier integrals, and Shannon's sampling theorem as shown

in Fig 1.1.

Fig 1.1: Square, Saw tooth, Triangle, Semicircle waveforms

A function has a period L if f(x+L) Equals f(x) for every x in its domain. The basic period is the

smallest positive value of L.

The trigonometric functions sin x and cos x are periodic functions with fundamental period 2 and

tan x is periodic with fundamental period. A constant function is a periodic function of length L.

It is simple to demonstrate that if the functions f1,f2,f3..., fn are periodic with period L, then every

linear combination is valid.

3

Even and Odd Function:

A function f(x) is said to be even if f(−x) = f(x).

The function f(x) is said to be odd if f(−x) = −f(x).

Graphically, even functions have symmetry about the y-axis, whereas odd functions have

symmetry around the origin.

Fig 1.2: Even, Odd, Neither Even nor Odd functions

Examples:

Sums of odd powers of x are odd: 5x3 - 3x

Sums of even powers of x are even: -x6 + 4x4 + x2 - 3

Since x is odd, and cos x is even.

Fig 1.3: Sin and Cosine functions

The product of two odd functions is even: x sin x is even

The product of two even functions is even: x2 cos x is even

The product of an even function and an odd function is odd: sin x cos x is odd

What does the Fourier Series Formula entail?

4

The Fourier series formula for a function is given as

𝑓(𝑥) =
1

2
𝑎 + 𝑎 cos 𝑛𝑥 + 𝑏 sin 𝑛𝑥 (1.1)

 Where,

𝑎 =
1

𝜋
𝑓 𝑑𝑥

𝑎 =
1

𝜋
𝑓 cos 𝑛𝑥 𝑑𝑥

𝑏 =
1

𝜋
𝑓 sin 𝑛𝑥 𝑑𝑥

𝑛 = 1,2,3,4, … ….

Fourier series Applications and Uses:

A Fourier series is a sort of infinite mathematical series in which trigonometric functions are

used. Fourier series are used in practical mathematics, particularly in physics and electronics, to

represent periodic functions such as those seen in communications signal waveforms.

It is similar to a Taylor series, which depicts functions as potentially infinite sums of monomial

terms.

 The Fourier Series is very useful in mathematical analysis. It is readily separated and

integrated since it is a sum of numerous sines and cosines, which typically facilitates

analysis of functions such as saw waves, which are popular signals in experiments.

 The Fourier Series enables experimenters to discover noise sources. It may also be

used to remove noise sources by employing the concept of the Inverse Fast Fourier

Transform (IFFT).

 The Fourier Series also provides a streamlined analytical method for dealing with

discontinuous functions.

Fourier analysis is important in a wide range of fields, from scientific equipment to rigorous

mathematical analysis. Digital electronics and numerical Algorithms like the FFT have made the

5

Fourier series one of the most extensively used and helpful mathematical tools available to

scientists.

1.2 Fourier Transform:

When discussing time series analysis, the Fourier transform is a must. L tends to infinity

complex Fourier series is generalized as the Fourier transform. Allowing n/L tends to k, replace

discrete An with continuous F(k)dk forming equation 1.2, 1.3.

𝑎 =
1

𝐿
𝑓[𝑡] cos[

𝑛𝜋𝑡

𝐿
] 𝑑𝑡 (1.2)

𝑏 =
1

𝐿
𝑓[𝑡] sin[

𝑛𝜋𝑡

𝐿
] 𝑑𝑡 (1.3)

Time series (e.g. audio samples) may be broken down into their component frequencies using the

Fourier Transform as in equation 1.4.

Fourier transforms may be reversed to map frequencies back to their time sequences by

performing an Inverse Fourier Transform as in equation 1.5.

Fourier Transform

𝐹(𝑥) = 𝑓(𝑥) 𝑒 𝑑𝑘 (1.4)

Inverse Fourier Transform

𝑓(𝑥) = 𝐹(𝑘) 𝑒 𝑑𝑘 (1.5)

6

1.3 Discrete Fourier Transform (DFT):

The continuous Fourier Transform is not very effective for determining the frequency spectrum

of a sampled function. The Discrete Fourier Transform is required.

DFT:

𝐹 = 𝑓 𝑒 (1.6)

The complex numbers f0 …fN are transformed into complex numbers F0 … FN in equation 1.6.

IDFT:

𝑓 =
1

𝑁
𝐹 𝑒 (1.7)

The complex numbers F0 … Fn are transformed into complex numbers f0 … fN in equation 1.7.

Because real-world data contains complex integers, interpreting a DFT can be challenging. The

power at that frequency is represented by the magnitude of the complex number for a DFT

component. The relative quantities of the real and imaginary coefficients can be used to calculate

the waveform's phase. Positive and "negative" frequencies are also present.

Fourier series and Fourier integrals are related via sampling:

Treating signals f(t) as arbitrary L2[,] functions for the sake of Fourier analysis. However, in

practice, signal processing can only handle a certain quantity of data. The signal is typically

sampled digitally at regular or irregular discrete time intervals. The processed sample is then

utilized to recreate the signal on its own. If the sample is not tampered with, the signal should be

recovered precisely. What makes this possible? How does one precisely recreate a function f(t)

from discrete samples?

For arbitrary functions f, this is not feasible (t). However, the challenge is not hopeless since the

signals used in signal processing, such as speech or pictures are not arbitrary. The human voice,

for example, stands out clearly from static or random noise. The frequencies of sound in the

human voice are typically in a small frequency band, which is one distinguishing feature. In

reality, any signal that we can capture and analyze using actual hardware must be limited to a

7

specific frequency spectrum. Shannon-Whittaker sampling, this is one method for collecting and

then precisely reproducing a certain type of frequency-restricted signals. This approach is

extremely practical since it is used frequently in telephone, radio and television broadcasts, radar,

and other applications.

Applications of DFT:

Information is frequently encoded in the sinusoids that make up a signal. This is true for both

naturally occurring signals and those generated by people. Many objects in our universe

oscillate. For example, human vocal cord vibration causes speech; stars and planets change

brightness as they spin on their axes and orbit around each other; ship propellers cause periodic

displacement of water, and so forth. In these signals, the frequency, phase, and amplitude of the

component sinusoids are more essential than the shape of the time domain waveform. This data

is extracted using the DFT.

 Spectrum Analysis of a Sinusoid: Windowing, Zero-Padding, and FFT.

 Spectrograms.

 Filters and Convolution.

 Correlation Analysis.

 Power Spectral Density Estimation.

1.4 Fast Fourier Transform (FFT):

A fast Fourier transform (FFT) is a method that calculates the discrete Fourier transform (DFT)

of a sequence — the discrete Fourier transform is a tool for converting specified sorts of function

sequences into other types of representations.

A rapid Fourier transform can be employed in a variety of signal processing applications. It

might be beneficial for interpreting sound waves or for image-processing technology. A rapid

Fourier transform can be used to solve a variety of equations or to display various sorts of

frequency activity in helpful ways.

The fast Fourier transform (FFT) is commonly utilized in signal processing. Reduce the amount

of calculations needed to convert N points N2 to N log N, where LG is a base two method. There

are two types of FFT: time decimation and frequency decimation.

8

The FFT Algorithm differs in that it reorders the input components in reverse bit order before

creating the output transform (time decimation). The fundamental task is to divide a transform of

length N into two transforms of length N / 2.

Fast Fourier transform and the DFT are generally the domain of engineers and mathematicians

attempting to improve or enhance features of various technologies since they are exceedingly

mathematical aspects of both computers and electrical engineering. Fast Fourier transforms, for

example, might be useful in sound engineering, seismology, or voltage measurements.

Discrete Fourier Transform for n samples, the transform would ordinarily take O(n2) time to

process:

𝐹 = 𝑓 𝑒 (1.8)

Fast Fourier Transform takes O(n log(n)) time as in equation 1.8.

Most common Algorithm is the Cooley-Tukey Algorithm.

Even vs Odd Function:

Fig 1.4: Even vs Odd Function

Applications of FFT:

The FFT has several uses, including audio processing, radar, sonar, and software defined

radio, to mention a few. In all of these applications, the FFT converts a time domain

9

signal into a frequency domain representation of the signal. It can also do an inverse FFT

and re-create a signal by varying the amplitude of certain of the frequency components.

By removing the high frequencies, you have created a low pass filter. It's not exactly as

straightforward as that, but you get the idea.

 Digital Recording

 Sampling

 Additive Synthesis

 Pitch Correction Software.

1.5 DFT vs FFT:

Table 1.1: DFT vs FFT

DFT FFT

The DFT Algorithms can be either

programmed on general purpose digital

computers or implemented directly by special

hardware

The FFT Algorithm is used to compute the

DFT of a sequence or its inverse.

A DFT can be performed as O(N2) in time

complexity.

FFT reduces the time complexity in the order

of O (NlogN).

Establish the relationship between the time

domain and the frequency domain

Faster calculation

DFT can be used in many digital processing

systems across a variety of applications such

as calculating a signal’s frequency spectrum,

solving partial differential applications.

Applications of FFT include spectral analysis

in analog video measurements, large integer

and polynomial multiplication, filtering

Algorithms, computing isotopic distributions,

calculating Fourier series coefficients

Discreet version Fast version

In a nutshell, the Discrete Fourier Transform is important in physics because it may be used as a

mathematical tool to define the link between discrete signals' time domain and frequency domain

representations. It is a straightforward yet time-consuming Algorithm. However, a more

10

sophisticated but less time-consuming approach, such as the Fast Fourier Transform, can be

utilized to minimize the processing time and complexity of big transformations. FFT is a DFT

implementation that is used for quick DFT computation. In summary, FFT can perform

everything a DFT can do, but considerably more effectively and quickly. It's a quick approach to

compute the DFT.

1.6 FFT Algorithms:

Because the computational phase is too lengthy, it can be done using FFT or fast Fourier

transform. FFT is just the computation of the discrete Fourier transform in an Algorithmic

structure, where the computational portion is decreased.

The fundamental advantage of having FFT is that it allows you to create FIR filters.

The formula for FFT is as equation 1.9.

𝑥[𝐾] = 𝑥[𝑛]𝑊 (1.9)

Radix-2 FFT Algorithms:

Consider the computation of the N = 2v point DFT by the divide-and conquer approach.The N-

point data sequence into two N/2-point data sequences f1(n) and f2(n), corresponding to the even-

numbered and odd-numbered samples of x(n), respectively, that is

𝑓 (𝑛) = 𝑥(2𝑛) (1.10)

𝑓 (𝑛) = 𝑥(2𝑛 + 1), 𝑛 = 0,1,2, … … ,
𝑁

2
− 1 (1.11)

Thus f1(n) and f2(n) are obtained by decimating x(n) by a factor of 2 as in equation 1.10, 1.11 and

hence the resulting FFT Algorithm is called a decimation-in-time Algorithm.

Now the N-point DFT can be expressed in terms of the DFT's of the decimated sequences as

follows:

11

𝑋(𝑘) = 𝑥[𝑛]𝑊 , 𝑘 = 0,1, … … , 𝑁 − 1

= 𝑥[𝑛]𝑊 +

,

𝑥[𝑛]𝑊

,

 = 𝑥[2𝑚]𝑊 + 𝑥[2𝑚 + 1]𝑊
()

 (1.12)

But WN2 = WN/2. With this substitution, the equation 1.12 can be expressed as

𝑋(𝑘) = 𝑓 [𝑚]𝑊 / +

/

𝑓 [𝑚]𝑊 /

/

 = 𝐹 (𝑘) + 𝑊 𝐹 (𝑘), 𝑘 = 0,1, . . 𝑁 − 1 (1.13)

Where F1(k) and F2(k) are the N/2-point DFTs of the sequences f1(m) and f2(m), respectively.

Since F1(k) and F2(k) are periodic, with period N/2, we have 𝐹1(𝑘 + 𝑁/2) = 𝐹1(𝑘) and

𝐹2(𝑘 + 𝑁/2) = 𝐹2(𝑘). In addition, the factor 𝑊
/

= −𝑊 . Hence the equation 1.13 may

be expressed as

𝑋(𝑘) = 𝐹 (𝑘) + 𝑊 𝐹 (𝑘), 𝑘 = 0,1, . .
𝑁

2
− 1 (1.14)

𝑋 𝑘 +
𝑁

2
= 𝐹 (𝑘) − 𝑊 𝐹 (𝑘), 𝑘 = 0,1, . .

𝑁

2
− 1 (1.15)

The direct computation of F1(k) requires (N/2)2 complex multiplications. The same applies to the

computation of F2(k). Furthermore, there are N/2 additional complex multiplications required to

compute 𝑊 F2(k). Hence the computation of X(k) requires 2(𝑁/2) + 𝑁/2 = 𝑁 /2 + 𝑁/2

complex multiplications. This first step results in a reduction of the number of multiplications

from 𝑁 to 𝑁 /2 + 𝑁/2, which is about a factor of 2 for N large.

12

By computing N/4-point DFTs obtain the N/2-point DFTs F1(k) and F2(k) from the equations

1.14, 1.15.

𝐹 (𝑘) = 𝐹[𝑓 (2𝑛)] + 𝑊 / 𝐹[𝑓 (2𝑛 + 1)], 𝑘 = 0,1, … . ,
𝑁

4
− 1; 𝑛 = 0,1, … .

𝑁

4
− 1 (1.16)

𝐹 (𝑘 + 𝑁/4) = 𝐹[𝑓 (2𝑛)] − 𝑊 𝐹[𝑓 (2𝑛 + 1)], 𝑘 = 0,1, . . ,
𝑁

4
− 1; 𝑛 = 0,1, . .

𝑁

4
− 1 (1.17)

𝐹 (𝑘) = 𝐹[𝑓 (2𝑛)] + 𝑊 / 𝐹[𝑓 (2𝑛 + 1)], 𝑘 = 0,1, … . ,
𝑁

4
− 1; 𝑛 = 0,1, … .

𝑁

4
− 1 (1.18)

𝐹 (𝑘 + 𝑁/4) = 𝐹[𝑓 (2𝑛)] − 𝑊 𝐹[𝑓 (2𝑛 + 1)], 𝑘 = 0,1, . . ,
𝑁

4
− 1; 𝑛 = 0,1, . .

𝑁

4
− 1 (1.19)

F(*) Fourier Transform

The decimation of the data sequence can be repeated again and again until the resulting

sequences are reduced to one-point sequences as in equations 1.16, 1.17, 1.18, 1.19. For N = 2v,

this decimation can be performed v = log 𝑁 times. Thus the total number of complex

multiplications is reduced to (N/2)log 𝑁. The number of complex additions is 𝑁 log 𝑁.

Radix-4 FFT Algorithm:

The radix-4 decimation-in-time and decimation-in-frequency methods are quick. FFTs increase

speed by reusing the results of smaller, intermediate calculations to generate multiple DFT

frequency outputs. The radix-4 decimation-in-time technique divides the discrete Fourier

transform (DFT) equation into four parts: sums over all groups of every fourth discrete-time

index n=[0,4,8,...,N-4], n=[1,5,9,...,N-3], n=[2,6,10,...,N-2], and n=[3,7,11,...,N-1]. (This only

works if the FFT length is a multiple of four.) Further mathematical manipulation reveals that the

length-N DFT, like the radix-2 decimation-in-time FFT, can be computed as the sum of the

outputs of four length-N/4 DFTs, of the even-indexed and odd-indexed discrete-time samples,

respectively, where three of them are multiplied by so-called twiddle factors. The radix-4

decimation-in-time and decimation-in-frequency methods are quick. FFTs increase speed by

reusing the results of smaller, intermediate calculations to generate multiple DFT frequency

outputs. The radix-4 decimation-in-time technique divides the discrete Fourier transform (DFT)

equation into four parts: sums over all groups of every fourth discrete-time index n=[0,4,8,...,N-

13

4], n=[1,5,9,...,N-3], n=[2,6,10,...,N-2], and n=[3,7,11,...,N-1]. (This only works if the FFT

length is a multiple of four.) Further mathematical manipulation reveals that the length-N DFT,

like the radix-2 decimation-in-time FFT, can be computed as the sum of the outputs of four

length-N/4 DFTs, of the even-indexed and odd-indexed discrete-time samples, respectively,

where three of them are multiplied by so-called twiddle factors. The radix-4 decimation-in-time

and decimation-in-frequency methods are quick. FFTs increase speed by reusing the results of

smaller, intermediate calculations to generate multiple DFT frequency outputs. The radix-4

decimation-in-time technique divides the discrete Fourier transform (DFT) equation into four

parts: sums over all groups of every fourth discrete-time index n=[0,4,8,...,N-4], n=[1,5,9,...,N-

3], n=[2,6,10,...,N-2], and n=[3,7,11,...,N-1]. (This only works if the FFT length is a multiple of

four.) Further mathematical manipulation reveals that the length-N DFT, like the radix-2

decimation-in-time FFT, can be computed as the sum of the outputs of four length-N/4 DFTs, of

the even-indexed and odd-indexed discrete-time samples, respectively, where three of them are

multiplied by so-called twiddle factors.

𝑊 = 𝑒 , 𝑊 , 𝑎𝑛𝑑 𝑊 .

𝑋(𝐾) = 𝑥(𝑛)𝑒

= 𝑥(4𝑛)𝑒
×()

+ 𝑥(4𝑛 + 1)𝑒
×()

+ 𝑥(4𝑛 + 2)𝑒
×()

+ 𝑥(4𝑛 + 3)𝑒
×()

= 𝐷𝐹𝑇 [𝑥(4𝑛)] + 𝑊 𝐷𝐹𝑇 [𝑥(4𝑛 + 1)] + 𝑊 𝐷𝐹𝑇 [𝑥(4𝑛 + 2)]

+ 𝑊 𝐷𝐹𝑇 [𝑥(4𝑛 + 3)] (1.20)

This is called decimation in time because the time samples are rearranged in alternating groups,

and a radix-4 Algorithm because there are four groups. Figure graphically illustrates this form of

the DFT computation

14

Radix-4 DIT structure:

Fig 1.5: Radix-4 DIT Structure

Because of the short-length DFTs' periodicity with N/4, their outputs for frequency-sample k are

utilised to compute X(k), X(k+N/4), X(k+N/2), and X(k+(3/4)N). The radix-4 FFT's efficiency is

due to this reuse. The radix-4 butterfly, seen in Figure, is formed by the computations associated

with each set of four frequency samples. Further rearranging reveals that this computation may

be reduced to three twiddle-factor multiplies and a length-4 DFT! According to the theory of

multi-dimensional index maps, this must be the case, and FFTs of any factorable length can be

composed of sequential stages of shorter-length FFTs with twiddle-factor multiplications in

between. There are no multiplies and just eight complex additions in the length-4 DFT (this

efficient computation can be derived using a radix-2 FFT).

15

Fig 1.6: Length 4-DFT unit

If the FFT length N=4M, the shorter-length DFTs can be further decomposed recursively in the

same manner to produce the full radix-4 decimation-in-time FFT. As in the radix-2 decimation-

in-time FFT, each stage of decomposition creates additional savings in computation. To

determine the total computational cost of the radix-4 FFT, note that there are M=log4N=log2N2

stages, each with N/4 butterflies per stage. Each radix-4 butterfly requires 3 complex multiplies

and 8 complex additions. The total cost is then

Radix-4 FFT Operation Counts:

3 = 𝑁 log 𝑁 complex multiplies (75% of a radix-2 FFT)

8 = N log 𝑁 complex adds (same as a radix-2 FFT)

The radix-4 FFT requires only 75% as many complex multiplies as the radix-2 FFTs, although it

uses the same number of complex additions. These additional savings make it a widely-used FFT

Algorithm.

The decimation-in-time operation regroups the input samples at each successive stage of

decomposition, resulting in a "digit-reversed" input order. That is, if the time-sample index n is

written as a base-4 number, the order is that base-4 number reversed. The digit-reversal process

is illustrated for a length-N=64 example below.

16

Table 1.2: Bit Reversal for N=64

Original Number Original Digit Order Reversed Digit Order Digit-Reversed Number

0 000 000 0

1 001 100 16

2 002 200 32

3 003 300 48

4 010 010 4

5 011 110 20

⋮ ⋮ ⋮ ⋮

It is important to note that if the input signal data are reversed before beginning the FFT

computations, the outputs of each butterfly throughout the computation can be placed in the

same memory locations from which the inputs were fetched, resulting in an in-place Algorithm

that requires no extra memory to perform the FFT. Most FFT implementations run in the

background, overwriting the input data with intermediate values and then the result. Burrus's

radix-4 FFT has a minor rearrangement that allows the inputs to be organised in bit-reversed

rather than digit-reversed order.

A radix-4 decimation-in-frequency FFT can be created in the same way that a radix-2 DIF FFT

can be created by computing all four groups of every fourth output frequency sample separately.

The DIF radix-4 FFT is a flow-graph reversal of the DIT radix-4 FFT, with the same operation

counts and twiddle factors but in the opposite order. For an in-place DIF method, the output is in

digit-reversed order.

17

Split-radix FFT Algorithms:

The split-radix method, which Duhamel and Hollman initially described and called in 1984,

requires fewer total multiply and add operations than any preceding power-of-two technique.

(Yavne developed roughly the same technique in 1968, but the description was so unusual that

the work was generally ignored.) Many FFT specialists felt it was ideal in terms of overall

complexity for a long time, however Johnson and Frigo recently identified even more efficient

versions.

The split-radix method may be obtained by carefully inspecting the radix-2 and radix-4

flowgraphs, as shown in Figure 1. While the radix-4 technique has less nontrivial twiddle factors

in most places, the radix-2 structure lacks twiddle factors present in the radix-4 structure in

certain places, or those twiddle factors simplify to multiplication by I which really needs just

adds. An method of lower complexity than either may be devised by correctly combining radix-2

and radix-4 operations.

Radix-4

Fig 1.7: Radix-4 Butterfly diagram

18

By combining the radix-2 and radix-4 decompositions, the split-radix method may also be

developed.

𝑋(𝑘) = 𝑥(2𝑛)𝑒
×()

+ 𝑥(4𝑛 + 1)𝑒
×()

+ 𝑥(4𝑛 + 3)𝑒
×()

= 𝐷𝐹𝑇 [𝑥(2𝑛)] + 𝑊 𝐷𝐹𝑇 [𝑥(4𝑛 + 1)] + 𝑊 𝐷𝐹𝑇 [𝑥(4𝑛 + 3)] (1.21)

The whole split-radix method is obtained by further decomposing the half- and quarter-length

DFTs. The combination of variable-length FFTs in different areas of the flowgraph produces an

irregular Algorithm; Sorensen et al. describe how to alter the calculation such that the data keeps

the simpler radix-2 bit-reverse order. The multiplicative complexity of the split-radix technique

is around two-thirds that of the radix-2 FFT, and it outperforms the radix-4 FFT and any higher

power-of-two radix. The adds within the complicated twiddle-factor multiplies are similarly

decreased, but because the underlying butterfly tree remains the same in all power-of-two

methods, the butterfly additions remain the same, and the total addition reduction is significantly

smaller.

The split-radix Algorithm has an atypical structure. Successful programs for single-processor

machines have been published (Sorensen), however it may be challenging to efficiently write the

split-radix technique for vector or multi-processor devices.

Example

Considered eight points named from x0 to x7 choose the even terms in one group and the odd

terms in the other. Points x0, x2, x4 and x6 have been grouped into one category and similarly,

points x1, x3, x5 and x7 has been put into another category.

Diagrammatic view:

Fig 1.8: Choosing 8-points in Split radix algorithm

19

Here, points x0, x2, x4 and x6 have been grouped into one category and similarly, points x1, x3,

x5 and x7 has been put into another category. Now, further make them in a group of two and can

proceed with the computation.

𝑥[𝑘] = 𝑥[2𝑟]𝑊 + 𝑥[2𝑟 + 1]𝑊
()

= 𝑥[2𝑟]𝑊 / + 𝑥[2𝑟 + 1]𝑊 / × 𝑊

= 𝐺[𝑘] + 𝐻[𝑘] × 𝑊 (1.22)

Initially an eight-point sequence is taken but later broken that one into two parts G[k] and H[k].

G[k] stands for the even part whereas H[k] stands for the odd part.

To realize it through a diagram

Fig 1.9: Diagram representing first 4 outputs in the output sequence

Fig 1.10: Diagram representing last 4 outputs in the output sequence

20

From the above figure, we can see as in equations 1.23, 1.24, 1.25, 1.26.

𝑊 = −1 (1.23)

𝑊 = −𝑊 (1.24)

𝑊 = −𝑊 (1.25)

𝑊 = −𝑊 (1.26)

Similarly, the final values can be written as equations 1.27, 1.28, 1.29, 1.30.

𝐺[0] − 𝐻[0] = 𝑋[5] (1.27)

𝐺[1] − 𝑊 𝐻[1] = 𝑋[5] (1.28)

𝐺[2] − 𝑊 𝐻[2] = 𝑋[6] (1.29)

𝐺[1] − 𝑊 𝐻[3] = 𝑋[7] (1.30)

The above one is a periodic series. The disadvantage of this system is that K cannot be broken

beyond 4 point. Further Processing

Fig 1.11: Diagram describing disadvantage of the split radix algorithm

21

CHAPTER 2

RELATED WORK

2.1 Literature Review:

Today's digital signal processing activities necessitate multiple multiplications, necessitating the

use of an extremely fast multiplier to meet a wide range of hardware and speed requirements. [2]

The FFT/IFFT technique is one of the most widely utilized in digital signal processing. Recently,

the FFT processor has seen widespread use in the field of digital signal processing, particularly

in communication systems. FFT/IFFT processors are essential components of a wireless

broadband communication system based on Orthogonal Frequency Division Multiplexing

(OFDM). The primary restrictions for FFT processors utilized in wireless communication

systems nowadays are execution time and power consumption. [3]

Digital signal processing is a method that is widely employed in video and audio applications.

Many approaches for analyzing visual or audio signals are accessible in the DSP domain. The

Discrete Fourier Transform (DFT) technique is frequently used in digital signal processing

applications such as linear filtering, convolution, spectrum analysis, and correlation. A frequency

domain representation of the original sequence is referred to as a DFT. [4]

DFT can be calculated in three different methods. The first way is to use the DFT formula or

simultaneous equation. The correlation technique is the second, while the application of the Fast

Fourier Transform is the third (FFT). The first way is useful for grasping the fundamental

concepts of DFT, however it is unsuitable for practical and application applications. The second

method entails detecting a known waveform in another signal. It is utilized in a few specific

applications. When DFT contains fewer than 32 points, this approach is employed. The genius

approach is the third method, in which the FFT Algorithm divides a DFT with N points into N

DFTs, each with a single point. It outperforms DFT. All three ways get the same result. We

concentrated on FFT in this section. The DFT employing FFT and its MATLAB implementation

were discussed in this study. The FFT spectra of the outputs are examined. [5]

22

FFT processers are used in OFDM MIMO systems which contribute in processing of the data for

transmission and reception. Orthogonal frequency division multiplexing (OFDM)

(de)modulation introduces a significant amount of latency in the baseband of huge multiple-input

multiple-output (MIMO) systems. A fast Fourier transform (FFT) processor and associated

reordering strategy are suggested to fulfill the low-latency demand of massive MIMO systems,

reducing the processing and reordering latency of OFDM-based systems, respectively. [1]

DFT is widely used in standard embedded system applications such as wireless communication

protocols requiring Orthogonal Frequency Division Multiplexing. [6]

However, DFT is difficult to implement directly due to its computational complexity. In practice,

Fast Fourier transform (FFT) is used for reducing the complexity of computations. For FFT

processors, butterfly operation is the most computationally demanding stage. Traditionally, a

butterfly unit is composed of complex adders and multipliers, and the multiplier is usually the

speed bottleneck in the pipeline of the FFT processor. [7]

As there are several aspects where FFT play a key role in the processing the of the data during

transmission and reception in a communication system. It enables computers to quickly calculate

the various frequency components of time-varying signals, as well as to reconstruct such signals

from a set of frequency components.

Thereby we decided to implement an FFT model through Verilog and design an efficient model

and extract the model aspects.

23

CHAPTER 3

METHODOLOGY

Radix-2 decimation-in-time and decimation-in-frequency are quick. The Fourier transformations

(FFTs) are the most basic FFT Algorithms. They gain speed, like other FFTs, by reusing the

results of smaller, intermediate calculations to compute multiple DFT frequency outputs.

3.1 Decimation in time:

The radix-2 decimation-in-time technique divides the discrete Fourier transform (DFT) equation

into two parts: a sum over the even-numbered indices n=[0,2,4,...,N-2] and a sum over the odd-

numbered indices n=[1,3,5,...,N-1] as in

Equation:

𝑋(𝐾) = 𝑥(𝑛)𝑒

= 𝑥(2𝑛)𝑒
×()

+ 𝑥(2𝑛)𝑒
×()

= 𝑥(2𝑛)𝑒 + 𝑒 𝑥(2𝑛 + 1)𝑒

= 𝑫𝑭𝑻 ⟦𝑥(0), 𝑥(2), . . , 𝑥(𝑁 − 2)⟧ + 𝑊 𝑫𝑭𝑻 [𝑥(0), 𝑥(2), . . , 𝑥(𝑁 − 1)] (3.1)

The mathematical simplifications in Equation 3.1, reveal that all DFT frequency outputs X(k)

can be computed as the sum of the outputs of two length-N/2 DFTs, of the even-indexed and

odd-indexed discrete-time samples, respectively, where the odd-indexed short DFT is multiplied

by a so-called twiddle factor term 𝑊 = 𝑒 (). Because the time samples are reorganised in

alternating groups, this is referred to as decimation in time and the technique is referred to as a

radix-2 Algorithm because there are two groups. Figure graphically illustrates this form of the

24

DFT computation, where for convenience the frequency outputs of the length-N/2 DFT of the

even-indexed time samples are denoted G(𝑘) and those of the odd-indexed samples as H(k).

Because of the periodicity with N/2 frequency samples of these length-N/2 DFTs, G(k) and H(k)

can be used to compute two of the length-N DFT frequencies, namely X(𝑘) and X(𝑘 +), but

with a different twiddle factor. This reuse of these short-length DFT outputs gives the FFT its

computational savings.

Fig 3.1: Decimation in time of a Length-N DFT into two length-N/2 DFTs followed by a

combining stage.

Whereas direct computation of all N DFT frequencies according to the DFT equation would

require N2complex multiplies and N2−N complex additions (for complex-valued data), by

reusing the results of the two short-length DFTs as illustrated in Figure. Figure depicts a basic

butterfly operation that requires just N/2 twiddle-factor multiplies per step. It is worth noting that

after combining the twiddle factors into a single term on the lower branch, the remaining

butterfly is a length-2 DFT! According to the theory of multi-dimensional index maps, this must

be the case, and FFTs of any factorable length can be composed of sequential stages of shorter-

length FFTs with twiddle-factor multiplications in between.

25

Fig 3.2: Radix-2 DIT butterfly simplification: both operations produce the same outputs

3.2 FFT with radix-2 decimation-in-time:

To save computation, the same radix-2 decimation in time can be performed recursively to the

two length N/2 DFTs. The radix-2 DIT FFT method is the result of applying shorter and shorter

DFTs until they reach length-2.

Fig 3.3: Radix-2 Decimation-in-Time FFT Algorithm for a length-8 signal

The entire radix-2 decimation-in-time decomposition shown in Figure with the simpler

butterflies includes M=log2N steps, each with N/2 butterflies. Each butterfly needs one

complicated multiplication and two additions.

26

CHAPTER 4

IMPLEMENTATION OF FFT ALGORITHM

The Decimation – In – Time (DIT) FFT Algorithm uses the “divide – and – conquer” approach.

This is possible if the length of the sequence N is chosen as 𝑁 = 𝑟 . Here, r is called the radix

of the FFT Algorithm. The most practically implemented choice for r = 2 leads to radix – 2 FFT

Algorithms. So, with N = 2 , the efficient computation is achieved by breaking the N – point

DFT into two 𝑁/2 - point DFTs, then breaking each 𝑁/2 - point DFT into two 𝑁/4 - point DFTs

and continuing this process until 2 – point DFTs are obtained.

4.1 Implementation of 8-Point Radix2 DIT-FFT Algorithm:

Initially the input 8-Bit sequence is sent to the butterfly unit where the corresponding 2-point

DFT is calculated i.e. on multiplication and addition of twiddle factors takes place.

This process occurs in 3 stages:

Stage: 1 In this stage 2-Point DFT takes place for x(0), x(4); x(2), x(6); x(1), x(5); x(3), x(7) i.e.

bit reversal order

Stage: 2 In here the output of (1st 2-Point DFT, 2nd 2-Point DFT); (3rd 2-Point DFT, 4th 2-Point

DFT) will be combined.

Stage: 3 In this stage the resultant 4-Point DFTs from previous stage are combined and output

will be obtained in natural order.

27

Fig 4.1: Block diagram of 8-Point Radix2 DIT-FFT Algorithm

4.2 Decimation – In – Time (DIT) FFT Algorithm:

In this Algorithm, the time – domain sequence x[n] is decimated into two 𝑁/2 – point sequences,

one composed of even – indexed values of x[n], and other composed of odd – indexed values of

x[n].i.e.

𝑔[𝑛] = 𝑥[2𝑛] (4.1)

𝑎𝑛𝑑, ℎ[𝑛] = 𝑥[2𝑛 + 1] (4.2)

The N – point DFT of x[n] is given by

𝑋(𝑘) = 𝑥[𝑛]𝑊 , 𝑘 = 0,1,2, … 𝑁 − 1 (4.3)

Equation 4.3 can be re-written as

𝑋(𝑘) = 𝑥[𝑛]𝑊 +

,

𝑥[𝑛]𝑊

,

= 𝑥[2𝑛]𝑊 + 𝑥[2𝑛 + 1]𝑊
()

28

= 𝑥[2𝑛]𝑊 + 𝑊 𝑥[2𝑛 + 1]𝑊 (4.4)

Using the third property of the twiddle factor, 𝑊 , the above equation 4.4 can be rewritten as

= 𝑥[2𝑛]𝑊 + 𝑊 𝑥[2𝑛 + 1]𝑊 (4.5)

Using equations 4.1 & 4.2 in the above equation, we obtain

𝑋(𝑘) = 𝑔[2𝑛]𝑊 + 𝑊 ℎ[𝑛]𝑊 𝑜𝑟 𝑋(𝑘) = 𝐺(𝑘) + 𝑊 𝐻(𝑘) (4.6)

Where G(k) and H(k) are the N/2 – point DFTs of g[n] and h[n] respectively. So, G(k) and H(k)

are periodic with period N/2 .i.e.,

𝐺 𝑘 +
𝑁

2
= 𝐺(𝑘) (4.7)

𝑎𝑛𝑑, 𝐻 𝑘 +
𝑁

2
= 𝐻(𝑘) (4.8)

And using the symmetry property of the twiddle factor, WN, and equations 4.7 & 4.8.

𝑋 𝑘 +
𝑁

2
= 𝐺(𝑘) − 𝑊 𝐻(𝑘) (4.9)

Equations 4.6 and 4.9 result in the following butterfly diagram

29

Fig 4.2: Butterfly diagram for Gk and Hk multiplied with twiddle factors

For example, for N = 8, the DFT points in terms of G and H are

𝑋(0) = 𝐺(0) + 𝑊 𝐻(0) (4.10)

𝑋(1) = 𝐺(1) + 𝑊 𝐻(1) (4.11)

𝑋(2) = 𝐺(2) + 𝑊 𝐻(2) (4.12)

𝑋(3) = 𝐺(3) + 𝑊 𝐻(3) (4.13)

For the remaining 4 points X(4) to X(7), we use equations 4.7, 4.8 and 4.9 to get

𝑋(4) = 𝐺(0) − 𝑊 𝐻(0) (4.14)

𝑋(5) = 𝐺(1) − 𝑊 𝐻(1) (4.15)

𝑋(6) = 𝐺(2) − 𝑊 𝐻(2) (4.16)

𝑋(7) = 𝐺(3) − 𝑊 𝐻(3) (4.17)

30

The butterfly diagram for the above set of equations 4.10, 4.11, 4.12, 4.13, 4.14, 4.15, 4.16, 4.17

is

Fig 4.3: Butterfly diagram for stage-3 in 8-point radix-2 FFT algorithm

The above process is repeated for calculating the N/2 point DFTs of g[n] and h[n], and this is

continued till we get two point DFTs. Once we reach a two – point sequence, say p[n]={p[0],

p[1]}, its 2 – point DFT would be as equation 4.10.

𝑝(𝑘) = 𝑝[𝑛]𝑊 , 𝑘 = 0,1 (4.10)

𝑜𝑟 𝑝(𝑘) = 𝑝[0] + 𝑝[1]𝑊 , 𝑘 = 0,1

⇒ 𝑝(0) = 𝑝[0] + 𝑝[1] 𝑎𝑛𝑑 𝑝(1) = 𝑝[0] + 𝑊 𝑝[1] = 𝑝[0] − 𝑝[1]

31

The overall butterfly diagram for DIT FFT Algorithm for N =8 is

Fig 4.4: Butterfly diagram for DIT FFT Algorithm for N =8

Due to repeated decimations, the input sequence is scrambled, and the order of the final input

sequence is obtained as follows

Table 4.1: Sequence table of DIT FFT Algorithm for N =8

32

4.3 Flow Chart of Implementation:

Fig 4.5: Flow chart of implementation for DIT-FFT Algorithm

33

CHAPTER 5

SIMULATION RESULTS

5.1 Behavioural Simulation:

Fig 5.1: Behavioural simulation waveform

In the above figure, we can observe the FFT simulation outputs. For the given predetermined

inputs and respective clock signal and selection line input; the real and imaginary parts of the

FFT output sequence is obtained.

“clk” represents clock signal, “sel” represents the output bit selection line i.e., it selects the one

out of 8 output elements in the output sequence “y”.

Where “yr” is real part of “y”, “yi” is imaginary part of “y”.

34

5.2 Schematics:

Top level Schematic of FFT model:

Fig 5.2: Top level Schematic of FFT model

Lower Level Schematic of FFT model:

Fig 5.3: Detailed schematic of FFT model

35

Synthesized Schematic of FFT Processor:

Fig 5.4: Synthesized schematic

5.3 Device outlook after Synthesis:

Fig 5.5: Device outlook

36

5.4 Output Sequence displayed in Vivado and Matlab:

Output sequence displayed in VIVADO console:

run 1000ns

 0yr=011111111,yi=000000000

 10yr=000110000,yi=010100101

 20yr=111001101,yi=001100110

 30yr=110110010,yi=000101101

 40yr=110101011,yi=000000000

 50yr=110110010,yi=111010011

 60yr=111001101,yi=110011010

 70yr=000110000,yi=101011011

Output sequence displayed in Matlab Command window:

Fig 5.6: Matlab Command window

37

5.5 Utilization Report for the Design:

Utilization Design Information

Table of Contents

1. Slice Logic
1.1 Summary of Registers by Type
2. Memory
3. DSP
4. IO and GT Specific
5. Clocking
6. Specific Feature
7. Primitives
8. Black Boxes
9. Instantiated Netlists

1. Slice Logic

+-------------------------+------+-------+-----------+-------+
| Site Type | Used | Fixed | Available | Util% |
+-------------------------+------+-------+-----------+-------+
Slice LUTs*	7	0	63400	0.01
LUT as Logic	7	0	63400	0.01
LUT as Memory	0	0	19000	0.00
Slice Registers	14	0	126800	0.01
Register as Flip Flop	14	0	126800	0.01
Register as Latch	0	0	126800	0.00
F7 Muxes	0	0	31700	0.00
F8 Muxes	0	0	15850	0.00
+-------------------------+------+-------+-----------+-------+
* Warning! The Final LUT count, after physical optimizations and full
implementation, is typically lower. Run opt_design after synthesis, if not
already completed, for a more realistic count.

1.1 Summary of Registers by Type

+-------+--------------+-------------+--------------+
| Total | Clock Enable | Synchronous | Asynchronous |
+-------+--------------+-------------+--------------+
0	_	-	-
0	_	-	Set
0	_	-	Reset
0	_	Set	-
0	_	Reset	-
0	Yes	-	-
0	Yes	-	Set
0	Yes	-	Reset
0	Yes	Set	-
14	Yes	Reset	-
+-------+--------------+-------------+--------------+

38

2. Memory

+----------------+------+-------+-----------+-------+
| Site Type | Used | Fixed | Available | Util% |
+----------------+------+-------+-----------+-------+
Block RAM Tile	0	0	135	0.00
RAMB36/FIFO*	0	0	135	0.00
RAMB18	0	0	270	0.00
+----------------+------+-------+-----------+-------+
* Note: Each Block RAM Tile only has one FIFO logic available and
therefore can accommodate only one FIFO36E1 or one FIFO18E1. However, if a
FIFO18E1 occupies a Block RAM Tile, that tile can still accommodate a
RAMB18E1

3. DSP

+-----------+------+-------+-----------+-------+
| Site Type | Used | Fixed | Available | Util% |
+-----------+------+-------+-----------+-------+
| DSPs | 0 | 0 | 240 | 0.00 |
+-----------+------+-------+-----------+-------+

4. IO and GT Specific

+-----------------------------+------+-------+-----------+-------+
| Site Type | Used | Fixed | Available | Util% |
+-----------------------------+------+-------+-----------+-------+
Bonded IOB	22	0	210	10.48
Bonded IPADs	0	0	2	0.00
PHY_CONTROL	0	0	6	0.00
PHASER_REF	0	0	6	0.00
OUT_FIFO	0	0	24	0.00
IN_FIFO	0	0	24	0.00
IDELAYCTRL	0	0	6	0.00
IBUFDS	0	0	202	0.00
PHASER_OUT/PHASER_OUT_PHY	0	0	24	0.00
PHASER_IN/PHASER_IN_PHY	0	0	24	0.00
IDELAYE2/IDELAYE2_FINEDELAY	0	0	300	0.00
ILOGIC	0	0	210	0.00
OLOGIC	0	0	210	0.00
+-----------------------------+------+-------+-----------+-------+

39

5. Clocking

+------------+------+-------+-----------+-------+
| Site Type | Used | Fixed | Available | Util% |
+------------+------+-------+-----------+-------+
BUFGCTRL	1	0	32	3.13
BUFIO	0	0	24	0.00
MMCME2_ADV	0	0	6	0.00
PLLE2_ADV	0	0	6	0.00
BUFMRCE	0	0	12	0.00
BUFHCE	0	0	96	0.00
BUFR	0	0	24	0.00
+------------+------+-------+-----------+-------+

6. Specific Feature

+-------------+------+-------+-----------+-------+
| Site Type | Used | Fixed | Available | Util% |
+-------------+------+-------+-----------+-------+
BSCANE2	0	0	4	0.00
CAPTUREE2	0	0	1	0.00
DNA_PORT	0	0	1	0.00
EFUSE_USR	0	0	1	0.00
FRAME_ECCE2	0	0	1	0.00
ICAPE2	0	0	2	0.00
PCIE_2_1	0	0	1	0.00
STARTUPE2	0	0	1	0.00
XADC	0	0	1	0.00
+-------------+------+-------+-----------+-------+

7. Primitives

+----------+------+---------------------+
| Ref Name | Used | Functional Category |
+----------+------+---------------------+
OBUF	18	IO
FDRE	14	Flop & Latch
LUT3	11	LUT
IBUF	4	IO
LUT2	1	LUT
LUT1	1	LUT
BUFG	1	Clock
+----------+------+---------------------+

8. Black Boxes

+----------+------+
| Ref Name | Used |
+----------+------+
9. Instantiated Netlists

+----------+------+
| Ref Name | Used |
+----------+------+

40

5.6 Vivado Synthesis Report:

Start RTL Component Statistics
--

Detailed RTL Component Info :
+---Adders :
 4 Input 9 Bit Adders := 6
 3 Input 9 Bit Adders := 2
+---Registers :
 9 Bit Registers := 2
--

Finished RTL Component Statistics
--

--

Start RTL Hierarchical Component Statistics
--

Hierarchical RTL Component report
Module dit_fft_8
Detailed RTL Component Info :
+---Registers :
 9 Bit Registers := 2
Module bfly4_4
Detailed RTL Component Info :
+---Adders :
 4 Input 9 Bit Adders := 3
 3 Input 9 Bit Adders := 1
--

Finished RTL Hierarchical Component Statistics

Start Writing Synthesis Report
--

Report BlackBoxes:
+-+--------------+----------+
| |BlackBox name |Instances |
+-+--------------+----------+
+-+--------------+----------+

41

Report Cell Usage:
+------+-----+------+
| |Cell |Count |
+------+-----+------+
1	BUFG	1
2	LUT1	1
3	LUT2	1
4	LUT3	11
5	FDRE	14
6	IBUF	4
7	OBUF	18
+------+-----+------+

Report Instance Areas:
+------+---------+-------+------+
| |Instance |Module |Cells |
+------+---------+-------+------+
|1 |top | | 50|
+------+---------+-------+------+
--

Finished Writing Synthesis Report : Time (s): cpu = 00:00:14 ; elapsed =
00:00:21 . Memory (MB): peak = 953.789 ; gain = 479.191

42

5.7 Matlab vs Vivado:

Fig 5.7: Matlab and Vivado FFT output sequence magnitudes comparison and error

percentage

Fig 5.8: Detailed comparison of Matlab and Vivado FFT output sequence magnitudes as
Bar graph

43

5.8 Conclusion and Future Scope:

In this paper, we have implemented the DIT-FFT architecture of Length-8 input sequence, which
produce the complex output sequence containing signed real and imaginary parts. Here we also
extracted the device on board, schematics (top level, elaborated, synthesized), Tcl console
display data for obtained outputs in signed binary form, utilization report, synthesis report. And
using Matlab we obtained the Matlab FFT function output for length 8 input sequence.

Here our goal is to compare our HDL model output sequence with respective matlab output for
the same input sequence. For that we compared the HDL and Matlab outputs using bargraphs
and also found the error percentage.

Overall average error percentage is less than 1%. By this we can say our model is efficient as it is
very close to the theoretical values.

We can extend this model to longer length inputs and also we can introduce the pipelining
structure for faster and accurate performance and resource sharing can also be done.

44

CHAPTER 6: APPENDIX

APPENDIX-A

OVERVIEW OF DIGITAL SYSTEM DESIGN

Evolution of Computer System Design:

Digital circuit design has evolved rapidly over the last 25 years.The earliest digital circuits were

designed with vacuum tubes and transistors. Integrated circuits were then invented where logic

gates were placed on a single chip. The first integrated circuit(IC) chips were SSI (Small Scale

Integration) chips where the gate count was very small.

As technologies become sophisticated, designers were able to place circuits with hundreds of

gates on a chip. These chips were called MSI (Medium Scale Integration) chips. With the advent

of LSI(Large Scale Integration), designers could put thousands of gates on a single chip. At this

point, design processes started getting very complicated, and designers felt need to automate

these processes. Computer Aided Design (CAD) techniques began to evolve. Chips designers

began to use circuit and logic simulation techniques to verify the functionality of building blocks

of the order of about 100 transistors. The circuits were still tested on the breadboard, and the

layout was done on paper by hand on a graphic computer terminal.

With the advent of VLSI (Very Large Scale Integration) technology, designers could design

single chips with more than 100,000 transistors. Because of the complexity of these circuits, it

was not possible to verify these circuits on the breadboard. Computer-aided technologies became

critical for verification and design of VLSI digital circuits. Computer programs to do automatic

placement and routing of circuit layouts also became popular. The designers were now building

gate-level digital circuits manually on graphic terminals. They would build small building blocks

and then derive higher-level blocks from them. This process would continue until they had built

the top-level block. Logic simulators came into existence to verify the functionality of these

circuits before they were fabricated on chip.

45

Design specification:

Digital design flow begins with specification of the design at various level of abstraction. It

describes the functionality, interface and overall architecture of digital circuits to be designed.

The design specifications generally presented as a document describing a set of functionalities

that the final solution will have to provide and set constraints that it must satisfy. At this point,

architects do not need to think about how they will implement the circuit.

Behavior Description:

 In this process, circuit details and electronic components are not specified. Instead, the behavior

of each block at the highest level of abstraction is modeling. The behavioural approach to

modeling hardware components is different from circuit design in that it does not necessarily

reflect hoe the design is implemented. It is basically an Algorithmic and black box approach to

modeling. It accurately models what happens on the inputs and outputs of the box. For example,

if you wish to simulate the operation of your custom design connected to a commercial part like

a microprocessor. In this case, the microprocessor is complex and its internal operation is

irrelevant (only the external behavior is important). Behavior descriptions are important as they

corroborate the integrity of design idea.

Behaviour Description to RTL:

The designer starts with an abstract description of the circuit called the behavioural model. This

kind of description is used primarily to verify the methodology and functioning of the circuit.

The next step is to transform this description something closer to electronic circuitry. In other

words, the behavioural description needs to be converted to RTL (Registered transfer language) a

functional or RTL description describes a circuit in terms of its registers and the combinational

logic between the registers. This behavior synthesis can either be done manually or automatically

by software, the essential goal of doing this is to use logic synthesizers that makes this form of

description and synthesizes it to sets of registers and combinational logic, which can be readily

shipped to FPGA.

46

Functional Verification and Testing:

With the RTL design, the functional design of our digital system ends and its verification begins.

From this point onward, the design process is done with the assistance of CAD tools. The

underlying motivation is to remove all possible design errors before proceeding to the expensive

chip manufacturing. Verification methodology still lacks any standard or even commonly

accepted approach. The industrial approach to verification is functional validation. The

functional model of the design is simulated with meaningful input stimuli and the output is

checked for expected behavior. This model used for simulation is the RTL.

47

APPENDIX-B

INTRODUCTION TO VERILOG

Introduction:

Verilog, standardized as IEEE 1364, is a hardware description language (HDL) used to model

electronic systems. It is most commonly used in design and verification of digital circuits at the

regular -transfer level of abstraction. It is also used in verification of analog circuits and mixed

signal circuits HDL’s allows the design to be simulated earlier in the design circuits in order to

correct errors or experiments with different architectures.

Designs described in HDL are technology independent, easy to design and debug, and are

usually more readable than schematics, particularly for large circuits. Verilog can be used to

describe designs at four levels if abstractions:

1) Algorithmic level (much like as code if, case and loop statements).

2) Register transfer level (RTL uses registers connected by Boolean equations)

3) Gate level (interconnected AND, NOR etc.).

4) Switch level (the switches are MOS transistors inside gates).

A Verilog design consists of a hierarchy of modules. Modules encapsulate design hierarchy, and

communicate with other modules through a set of declared input, output and bidirectional ports.

Internally, a module can contain any combination of the following: net/variable declarations

(wire, reg, integer, etc.), concurrent and sequential statement blocks, and instances of other

modules (sub-hierarchies).

Features of Verilog HDL:

Verilog HDL offers many useful features for hardware design

48

 Verilog (verify logic) HDL is general purpose hardware description language that is easy

to learn and easy to use. It is similar in syntax to C programming language. Designers

with C programming experience will find it easy to learn Verilog HDL.

 Verilog HDL allows different levels of abstraction to be mixed in the same model. Thus a

designer can define a hardware model in terms of switches, gates, RTL, or behaviour

code. Also a designer needs to learn only one language for stimulus and hierarchical

designs.

 Most popular logic synthesis tools support Verilog HDL. This makes it the language of

choice for designers.

 All fabrication vendors provide Verilog HDL libraries for post logic synthesis simulation.

Thus designing a chip in Verilog HDL allows the widest choice of vendors.

 The Programming language interface (PLI) is a powerful feature that allows the user to

custom C code to interact with the internal data structures of Verilog. Designers can

customize a Verilog HDL simulator to their need with the Programming language

interface (PLI).

Module Declaration:

A module is the principal design entity in Verilog. The first line of a module declaration

specifies the name and port list (arguments). The next few lines specifies the I/O type (input,

output or inout) and width of each port. The default port with is 1 bit. Then the port variables

must be declared wire, reg. The default is wire.

Typically, inputs are wire since their data is latched outside the module. Outputs are type regif

their signals were stored inside always or initial block

Syntax

module model_ name(port_list);

input[msb:lsb] input_port_list;

output[msb:lsb] output_port_list;

inout[msb:lsb] inout_port_list;

 …….statements…………

endmodule

49

Example

Module add_sub(add, in1, in2, oot);

Input add;//defaults to wire

input[7:0] in1, in2, wire in1, in2;

Output[7:0] oot;

Reg oot;

 ………statements……..

endmodule

Verilog has four levels of modelling:

1) The switch level Modeling.

2) Gate- level Modeling.

3) The Data-Flow level.

4) The behavioural or procedural level.

Switch level Modeling

A circuit is defined by explicity showing how to constrct it using transistors like pmos and nmos,

predefined modules.

Example

module inverter (out,in);

output out;

input in;

Supply0 gnd;

Supply1 vdd;

Nmos x1(out, in, gnd);

Pmos x2(out, in, vdd);

endmodule

50

Gate level Modeling:

A circuit is defined by explicitly showing how to correct it using logic gates. Predefined

modules, and the connections between them. In this first we think of our circuit as a box or

module which is encapsulated from its outer environment, in such a way that its only

communication with the outer environment, is through input and output ports. We then set out to

describe structure within the module by explicitly describing its gates and sub modules, and how

they connect with one another as well as to the module ports.

In other words, structural modeling is used to draw a schematic diagram for the circuit. As an

example, consider the full-adder below.

Example

Module fulladder (a, b, sum, Cout);

input a, b;

Output sum, Cout;

xor x1(a, b, y);

xor x2(a, b, y);

endmodule

Data-Flow Modeling:

Dataflow modeling uses Boolean expressions and operators. In this we use assign statement.

Example

Module fulladder (a, b, sum, Cout);

input a, b;

output sum, Cout;

assign sum=a^b;

assign Cout=a^b;

51

endmodule

Behavioural modeling:

It is higher level of modeling where behavior of logic is modeled. Verilog behavioural

Code is inside procedure blocks, but there is an exception: some behavioural code also exist

outside procedure blocks.

There are two types of procedural blocks in Verilog

Initial: initial blocks execute only once at time zero (start execution at time zero) Always:

always blocks loop to execute over and over again; in other words, as other words as the name

suggests, it executes always.

 An always statement executes repeatedly, it starts and its execution at other 0 ns

Syntax:

always@ (sensitivity list)

Begin

 Procedural statements

end

Example

Module fulladder(a, b, clk, sum);

Input a, b, clk;

output sum;

always@ (posedge clk)

begin

sum= a+b;

endmodule

52

Software Design and Development:

A description of the hardware's structure and behavior is written in a high level hardware

description language (usually VHDL or Verilog and those codes is then compiled and

downloaded prior to execution. Although schematic capture can be used for design entry but due

to more complex designs and the improvement of the language-based tools it has become less

popular.

The most distinct difference between hardware and software design is the way a developer must

think about the problem. Software developers tend to think sequentially, even when they are

tasked to program a multithread application. Most of the time, the source code is always

executed in that order. At the design entry phase, hardware designers must think and program in

parallel.

All of the input signals are processed in parallel: inside each ore is a series of macro cells and

interconnections routed toward their destination output signals. Therefore, the statement of a

hardware description language creates structures, all of which are process at the very same time.

(Normally the link between each macro cell to another macro cell usually -synchronized to some

other signal, like a common clock).

In a typical design, after each design entry is completed the next step is to perform periods of

functional simulation. This is where a simulator comes in place. It is used to execute the design

and confirms that the correct/required outputs are produced for a given set of test inputs.

This step is to ensure the designer that his/her logic is functionally correct before going on to the

next stage development. This is a good practice as compared to simulating a full scale design

entry. As the design entry gets more complex, the troubleshooting will be much difficult and

time consuming.

Software tools used:

Xilinx Vivado:

Vivado enables developers to synthesize their designs, perform timing analysis

examine RTL diagrams, simulate a design's reaction to different stimuli, and configure the target

53

device with the programmer. Vivado is a design environment for FPGA products from Xilinx,

and is tightly-coupled to the architecture of such chips, and cannot be used with FPGA products

from other vendors.

Language support

The Vivado High-Level Synthesis compiler enables C, C++ and System C programs to be

directly targeted into Xilinx devices without the need to manually create RTL. Vivado HLS is

widely reviewed to increase developer productivity, and is confirmed to support C++ classes,

templates, functions and operator overloading.

Xilinx vivado enables simulation, verification and synthesis for the following languages

 VHDL

 Verilog

 System Verilog

54

APPENDIX-C

XILINX VIVADO

Xilinx Vivado ISE Design Suite(16.1 version):

Xilinx is a powerful software tool that is used to design, synthesize, simulate, test and verify

digital circuit designs. The designer can describe the digital design by either using the schematic

entry tool or a hardware description language. In this software we will create VHDL design input

files – the hardware description of the logic circuit, compile VHDL source files, create a test

bench and simulate the design to make sure of the correct operation of the design (functional

simulation). The purpose of this is to give new users an exposure to the basic and necessary steps

to implement and examine your own designs using ISE environment. In this, we will design one

simple module (OR gate); however, in the future, you will be designing such modules and

completing the overall circuit design from these existing files. A VHDL input file in the Xilinx

environment consists of: Entity Declarations: module name and interface specifications (I/O) –

list of input and output ports; their mode, which is direction of data flow; and data type.

Architecture: defines a component’s logic operation.

There are different styles for the architecture body: (i) Behavioural – set of sequential

assignment statements (ii) Data Flow – set of concurrent assignments o Structural – set of

interconnected components A combination of these could be used, but in this tutorial we will use

Dataflow. In its simplest form, the architectural body will take the following format, regardless

of the style: architecture architecture_name of entity_name is begin … -- statement end

architecture_name;

ISE (Integrated Software Environment) is a software tool produced by Xilinx for synthesis and

analysis of HDL designs, enabling the developer to synthesize (“compile”) their designs, perform

timing analysis, examine RTL diagrams, simulate a design’s reaction to different simuli, and

configure the target device with the programmer.

55

Xilinx is an American technology company, primarily a supplier of programmable logic devices.

It is known for inventing FPGA.

The Xilinx ISE is primarily used for circuit synthesis and design, while the Modelsim logic

simulator is used for system-level testing.

ISE Project Navigator:

In this section, we introduce the reader to the main components of an “ISE Project Navigator”

window, which allows us to manage our design files and move our design process from creation

to synthesis and to simulation phase.

Fig 6.1: ISE Project Navigator window

By opening the Xilinx Vivado ISE suite, we will come to see the 3 main points. They are

1) Quick start

2) Tasks

3) Information Center

In the Quick start block, We have create a new project, open project and open example project

In the Tasks, We have Manage IP, open hardware manager, xilinx Td store.

In the Information center, we have documentation and tutorials,quick take videos and release

notes guide.

56

This section describes the four basic steps to working with a project.

Step 1––– Creating a New Project

This creates .xprfile and a working library.

Step 2––– Adding Items to the project

Projects can reference or include source files, folders for organizations, simulations, and any

other files you want to associate with the project. You can copy files into the project directory or

simply create mappings to files in other locations.

Step 3––– Compiling the Files

This checks syntax and semantics and creates the pseudo machine code that Viavdo uses for

simulation.

Step 4––– Simulating a Design

This specifies the design unit you want to simulate and opens a structure tab in the workspace

pane.

you specify will be used to create a working library subdirectory within the Project

In order to start ISE double click the desktop icon: Or click:

Creating a New Project

After launching Vivado, from the startup page click the “Create New Project” icon.

Alternatively, you can select File -> New Project

57

Fig 6.2: Creating new project window

The New Project wizard will launch, click the “Next >” button to proceed

Fig 6.3: Guiding wizard for the project

Enter a project name and select a project location. Make certain there are NO SPACES in

either! It’s not a bad idea to only use letters, numbers, and underscores as well. If necessary

simply create a new directory for your Xilinx Vivado projects in your root drive (e.g.

C:\Vivado). You will likely always want to select the “Create project sub-directory” check-box

58

as well. This keeps things neatly organized with a directory for each project and helps avoid

problems. Click the “Next >” button to proceed.

Fig 6.4: Creating a project name

Select the “RTL Project” radial and select the “Do not specify sources at this time” check-box.

If you don’t select the check-box the wizard will take you through some additional steps to

optionally add preexisting items such as VHDL or Verilog source files, Vivado IP blocks, and

.XDC constraint files for device pin and timing configuration. For this first project you will add

the necessary items later. Click the “Next >” button to proceed.

Fig 6.5: Specifying the RTL project

59

You need to filter down to and select the specific part number for your project. You can

physically read the markings on your chip or refer to your board’s documentation to find its part

number. In the case of the Basys 3 it’s the Artix-7 chip that’s on the board, and the filters shown

will help you get to the correct device that’s highlighted. Once you select the correct device

click the “Next >” button to proceed.

Fig 6.6: Choosing a board for project

Click the “Finish” button and Vivado will proceed to create your project as specified.

Fig 6.7: Project summary

60

Steps for Design entry:

Working through the Basic Project Flow:

The Vivado project window contains a lot of information, and the information displayed can

change depending on what part of the design you currently have open as you work through the

steps of your project. Keep this in mind as you work through this guide, because if you don’t see

a specific sub-window or sub-window tab it’s possible you aren’t in the correct part of the

design.

The “Flow Navigator” on the left side of the screen has all the major project phases organized

from top to bottom in their natural chronological order. You begin in the “Project Manager”

portion of the flow and the header at the top of the screen next to the Flow Navigator reflects

this. This header and the corresponding highlighted section in the Flow Navigator will tell you

which phase of the design you have open.

Fig 6.8: Main window for the project

61

Project Manager

Project Settings

Begin by clicking on “Project Settings” under the Project Manager phase of the Flow Navigator

Fig 6.9: Project settings window

There are a lot of settings available here for all phases of the project flow, but for now just select

“System Verilog” from the drop-down for the “Target language” in the “General” project

settings and click the “OK” button.

Add Sources

Now click on “Add Sources” under the Project Manager phase of the Flow Navigator

62

Fig 6.10: Adding the source files

Select the “Add or create design sources” radial and then click the “Next >” button.

Fig 6.11: Wizard that shows to the design source

63

Click the “Create File” button or click the green “+” symbol in the upper left corner and select

the “Create File…” option.

Fig 6.12: Creating a new file name for new design source

Make sure the options shown are selected in the “Create Source File” popup, and for the sake of

following along enter “convolution (Gaussian filter)” for the “File name”. Click the “OK”

button when finished.

You can normally enter anything you like for the “File name” as long as it’s valid, but always

make certain there are NO SPACES!

64

Fig 6.13: Selecting the type of file and location

Click the “Finish” button and Vivado will then bring up the “Define Module” window.

Define Module

You can use the “Define Module” window to automatically write some of the VHDL code for

you. Additional “I/O Port Definitions” can be added by either clicking the green “+” symbol in

the upper left or by simply clicking on the next empty line. The “Entity name” and “Architecture

name” will be the corresponding Verilog HDL identifiers used in the code, as will whatever is

typed in for each “Port Name”. Any valid Verilog HDL identifier can be used for any of these,

but for the sake of following along enter the information as shown. Make sure the proper

“Direction” is set for each. Click the “OK” button when finished.

Note that if you would rather write your own code from scratch you can simply click the

“Cancel” button and Vivado will create a completely blank System Verilog, VHDL source file

inside your project. If you click the “OK” button without defining any “I/O Port Definitions”

Vivado will still write the basic Verilog HDL code structure but the port definition will be empty

and commented out for you to uncomment and fill later.

Also note that the port names here match the silkscreen reference designators of the switches and

LEDs on the Basys 3 board that will be utilized for the example. This is for the convenience of

65

those following along with the Basys 3, but should not be inferred as a requirement by beginners;

each name is simply an arbitrary identifier.

Fig 6.14: Module defining with ports

The System Verilog HDL source file generated will be added to your project in the “Design

Sources” folder as shown. Double click it and it will open up in a new tab for you to view/edit.

All the code here was generated by the previous “Define Module” window, and for this example

you only need to manually enter the three highlighted lines between the “begin” and “end”

keywords

If we want to create a simulation source we have to select a new simulation source by right

clicking the add source block in the panel

66

Fig 6.15: Creating the simulation sources

67

BIBLIOGRAPHY

[1] Mahdavi, M., Edfors, O., Owall, V., & Liu, L. (2019), " A Low Latency FFT/IFFT

Architecture for Massive MIMO Systems Utilizing OFDM Guard Bands", IEEE

Transactions on Circuits and Systems I: Regular Papers, 1–12.

[2] Enis ÇERRI, Marsida IBRO, "FFT Implementation on FPGA using Butterfly

Algorithm", International Journal of Engineering Research & Technology (IJERT),

ISSN: 2278-0181, Vol. 4 Issue 02, February-2015.

[3] Arioua.M., Belkouch.S., Agdad, M., & Hassani, M. M. (2011). "VHDL implementation

of an optimized 8-point FFT/IFFT processor in pipeline architecture for OFDM systems"

International Conference on Multimedia Computing and Systems, 2011.

[4] Ajay.A., & Lourde.R.M.,”VLSI implementation of an improved multiplier for FFT

computation in biomedical applications”, IEEE International Conference on

Electro/Information Technology (EIT) ,2015.

[5] Anant G. Kulkarni1, Dr. M. F. Qureshi2, Dr. Manoj Jha, "Discrete Fourier Transform:

Approach to Signal Processing",International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering, Vol. 3, Issue 10, October 2014.

[6] Wey.C., Lin.S., & Tang, W. (2007),” Efficient memory-based FFT processors for OFDM

applications”, In IEEE International Conf. on Electro-Information Technology, 345–350.

May.

[7] E.Bidet, C.joanblanq, P.senn,” A Fast Single Chip Implementation of 8192 Complex

Points FFT”,IEEE custom integrated circuits conferece,1994.

[8] Wey.C.L., Tang.W.C., & Lin.S.Y, “Efficient Memory-Based FFT Architectures for

Digital Video Broadcasting (DVB-T/H)”,International Symposium on VLSI Design,

Automation and Test (VLSI-DAT) ,2007.

[9] Anbarasan.A., & Shankar.K, ”Design and implementation of low power FFT/IFFT

processor for wireless communication”. International Conference on Pattern Recognition,

Informatics and Medical Engineering (PRIME-2012).

68

[10] Tang Song-Nien, and Yuan-Ho Chen. 2019. "Area-Efficient FFT Kernel with Improved

use of GI for Multi-standard MIMO-OFDM Applications", Applied Sciences 9, no. 14:

2877.

[11] F. Qureshi, S.A. Alam and O.Gustafsson,”4k-point FFT Algorithms based on optimized

twiddle factor multiplication for FPGA’s” in proc.2010 Asia Pacific Conference on

Postgraduate Research in Microelectronics and Electronics (Prime Asia),sep.2010.

[12] A.C. Geevarghese, Madheswaran.M,” FPGA implementation of IFFT Architecture with

enhanced pruning algorithm for low power applications”, Science Direct Microprocessors

and Micro systems,Volume 71, https://doi.org/10.1016/j.micpro.2019.06.010.

69

PUBLICATION

[1] B.Somasekhar, S.Srinivas, D.Durga Sai Prasanth, V.Purna Satya Srinivas, K.Anil Kumar,

G.Chaitanya,”Implementation of DIT-FFT Algorithm using Verilog”, Manuscript submitted

to International Journal of Electrical and Electronics Research (IJEER).

	1ce57c1ad303d91b50cc8c1318a21886ba29ddd04fc1cf37801dce150d2c4f43.pdf
	1ce57c1ad303d91b50cc8c1318a21886ba29ddd04fc1cf37801dce150d2c4f43.pdf
	1ce57c1ad303d91b50cc8c1318a21886ba29ddd04fc1cf37801dce150d2c4f43.pdf

